Eco-evo-devo

Phenotypic plasticity

How is biological diversity generated? Crucial roles are attributed to mutation, drift and natural selection. Increasingly, also phenotypic plasticity is recognized as an important factor in evolutionary change. Natural selection favors those traits that are beneficial for an organism and adaptations thus generally improve the organismal fit to the environment. When invading a new environment, or living in a changing environment, an organism has to cope with new or changing conditions, in which phenotypic plasticity can be advantageous. In our work we focus on traits closely linked to feeding (oral-pharyngeal-jaw systems), swimming (propulsion system) and orientation (lateral-line system) of fishes. We are interested how these traits respond to environmental shifts developmentally (based on the extremely progenetic Infant fishes, Schindleria), geographically (based on the phenotypically very plastic threespine stickleback, Gasterosteus aculeatus) and temporally (based on the Atlantic herring, Clupea harengus, a species which has to cope with zooplankton communities altered by climate change, its favorite prey).

 Selected publications

Ahnelt, H. (2020). A new species of Schindleria (Teleostei: Gobiidae) from Tahiti (French Polynesia) with a unique dentition of the lower jaw. Vertebrate Zoology, 70, 195–205. doi:10.26049/VZ70-2-2020-07

Ahnelt, H., Wibowo, A., Prianto, E. (2020). A new species of Pectenocypris (Teleostei: Cyprinidae) from peat swamps in Sumatra. Vertebrate Zoology, 70, 1–8. doi:10.26049/VZ70-1-2020-01

Ahnelt, H., Sauberer, M. (2018). A new species of Schindler’s fish (Teleostei: Gobiidae: Schindleria) from the Malaya Archipelago (Southeast Asia), with notes on the caudal fin skeleton of Schindleria. Zootaxa, 4531, 95–108. doi:10.11646/zootaxa.4531.1.4

Ahnelt, H., Schade, F. M., Wegner, K. M. (2016). Ocean acidification leads to deformations of caudal vein angio-architecture in juvenile threespine stickleback, Gasterosteus aculeatus Linnaeus. Journal of Fish Diseases, 8, 1001-1005. doi:10.1111/jfd.12417

Ahnelt, H., Herdina, N., Metscher, B. D. (2015). Unusual pharyngeal dentition in the African Chedrin fishes (Teleostei: Cyprinidae): significance for phylogeny and character evolution. Zoologischer Anzeiger – A Journal of Comparative Zoology, 255, 85-102. doi:10.1016/j.jcz.2015.02.007

Ott, A., Löffler, J., Ahnelt, H., Keckeis, H. (2012). Early development of the postcranial skeleton of the pike perch Sander lucioperca (Teleostei: Percidae) relating to developmental stages and growth. Journal of Morphology, 273, 894-908. doi:10.1002/jmor.20029

Kindermann, G., Miljkovic, N., Ahnelt, H., Stevenson, D. E. (2007). The osteology of Eucyclogobius newberryi and Quietula guaymasiae (Teleostei: Gobiidae), two closely related Gobionellines from the east Pacific. Annalen des Naturhistorischen Museums in Wien, 108B, 13-56. www.jstor.org/stable/41767357

Ahnelt, H., Pohl, H., Milkovic, N., Hilgers, H. (2006). Phenotypic diversity in the threespine stickleback Gasterosteus aculeatus Linnaeus 1758 (Teleostei: Gasterosteidae) in western Austria – the four-spine form. Annalen des Naturhistorischen Museums in Wien, 107B, 25-38. https://www.jstor.org/stable/41767334

Ahnelt, H., Bohacek, V. (2004). The lateral line system of two sympatric eastern Pacific gobiid fishes of the genus Lythrypnus (Teleostei: Gobiidae). Bulletin of Marine Science, 74(1), 31-51.

Ahnelt, H., Göschl, J., Dawson, M. N., Jacobs, D. K. (2004). Geographic variation in the lateral line canals of Eucyclogobius newberryi (Teleostei, Gobiidae) and its comparison with molecular phylogeography. Folia Zoologica, 53(4), 385-389.